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EXECUTIVE SUMMARY 

This report provides a methodology for determining in-flight tail loads using neural networks.  It 
does not require the installation of strain gages on each airplane.  It is an inexpensive and 
effective technique for collecting empennage load spectra for small transport airplanes already in 
service where installations of strain gages are impractical. 
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1.   INTRODUCTION. 

1.1  OVERVIEW. 

The Code of Federal Regulation (CFR) Part 23 requires that the wing, pressurized fuselage, and 
empennage of an aircraft must not fail within their expected lifetimes due to damage caused by 
the repeated loads typical to its operations.  This requirement generates the need for evaluation of 
fatigue life of critical aircraft structures.  Most commonly, the fatigue life is determined using the 
Palmgren-Miner Linear Cumulative Damage Theory.  In order to calculate fatigue life of a given 
structure accurately using this method, one must know the loading on this structure throughout its 
lifetime.  The most critical of these structures are the wing and the empennage.   
 
There is some information on wing in-flight loads of general aviation aircraft that can be used to 
determine fatigue life of such structures.  However, there is very little such information on 
empennage in-flight loads.  Clearly, an efficient, practical, and cost-effective method of 
determining the empennage in-flight loads in general aviation aircraft is much needed. 
 
Such a method could be used to create an empennage fatigue loads spectra.  This spectra, 
together with the existing fatigue load data for wings, could be used to determine the appropriate 
flight loads spectra for a newly designed or built aircraft.  Such a spectra could be used for 
designing empennage structures. 
 
In addition to building the loads spectra, an in-flight load monitoring system could be used to 
keep track of accumulated service loads usage of an airframe.  This would be of special interest 
to operators of general aviation aircraft since the severity of the usage of the aircraft that fall into 
this category could vary widely even for the same aircraft model.  For example; aircraft used in 
training environments or pipeline inspections are likely to experience flight loads that approach 
the design limits more frequently than aircraft flown occasionally for recreational purposes.  
Despite this wide usage spectrum, all general aviation operators are required to conform to a 
maintenance schedule that was established hypothetically for the most severe aircraft operation.   
 
One of the requirements for the successful implementation of this type of structural monitoring 
system for general aviation is it must be inexpensive.  If a large comprehensive in-flight load 
usage spectra is to be created, a large number of aircraft used in a variety of flight conditions will 
have to be monitored.  This suggests that the best system for the task would be one that is easy 
(and inexpensive) to install and maintain.  It should also not intrude into normal operations of the 
aircraft.  If it is to be widely adopted as a flight loads monitoring tool, the unit price must be low 
enough to attract the interest of small aircraft fleet operators and owners.  For either application, 
it would be undesirable to install transducers of any kind on structural components for direct 
measurements.  A system similar to the National Aeronautics and Space Administration (NASA) 
VGH (velocity, load factor, and altitude) recorder is ideal [1].  With the VGH system, the data 
recorded near the aircraft center of gravity (c.g.) is used to determine loads on extremities like the 
empennage.  Initial work performed in this study indicated that while there appears to be some 
relationship between acceleration in the y direction (c.g. Ny) and the strain in the vertical tail, 
there is only a very weak relationship between the acceleration in the z direction (c.g. Nz) and the 
strain in the horizontal tail.  Thus, the main focus of the present research is to develop another 
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method of relating data collected near the aircraft c.g. to strains occurring elsewhere, specifically 
in the empennage structure. 
 
1.2  PREVIOUS RESEARCH. 

The NASA VGH program was the largest and the longest running in-flight load monitoring 
program for general aviation aircraft.  In the United States, it also represents the only 
comprehensive flight loads spectra monitoring program.  This program started in the early 1960s 
and continued until 1982.  In that time 42,155 hours of data were collected on 105 airplanes.  
Airplanes were chosen from nine usage groups: twin-engine executive, single-engine executive, 
personal, instructional, commercial survey, aerial applications (fire fighting, etc.), aerobatic, 
commercial, and float operations.  Data for 35,286 hours of operation from 95 airplanes were 
evaluated and presented as a part of a fatigue evaluation method for wings in report AFS-120-73-
2 [2].  The final report on the VGH project—DOT/FAA/CT-91/20—was published in 1993.  As 
the original NASA VGH program focused on normal (z direction) accelerations, the need for a 
similar program to evaluate fatigue life of vertical aerodynamic surfaces such as fins, rudders, 
and winglets, was expressed by the authors of the final report.  Since only the accelerations near 
the center of gravity were measured, the NASA project left the problem of fatigue loads on 
empennage structure largely unaddressed [1]. 
 
Other load-monitoring programs have been completed outside the United States.  For example, a 
cooperative effort between the Dutch National Aerospace Laboratory (NLR), the Dutch National 
Airline (KLM), and the Fokker Company resulted in a year long in-flight tail load monitoring 
program [3].  In this program, strain was measured on the tail of a Fokker 100 airliner.  Data 
were collected over a period of one year of commercial service.  Large amounts of useful data 
were collected, but for a large fleet of aircraft, the method used—direct measurement using strain 
gages—is not considered to be a viable approach to the problem presented in the overview 
(section 1.1) due to the costs of installation and maintenance. 
 
There has also been a limited amount of work done in the area of flight loads prediction.  
Research done by the U.S. Navy has successfully demonstrated that it is possible to predict 
strains at some point of the structure from the flight parameter data collected at another point.  In 
this case, c.g. Nz, wing sweep angle, angle of attack, roll rate, Mach number, altitude, weight-on-
wheels indicator, and an indicator for takeoff, landing, and peak-or-valley data were used to 
predict strain at a point on aft fuselage of an F-14B aircraft.  The correlation coefficients were 
from 0.93 to 0.97 between the predicted and measured strain [4]. 
 
Another research effort by the U.S. Navy successfully employed neural networks to predict loads 
experienced in flight by the main rotor blades of a helicopter.  Neural networks were chosen 
because of the difficulties associated with attempts to directly measure loads in a rotating system.  
The inputs to the network were load factor, longitudinal, lateral, pitch, roll, and yaw 
accelerations, airspeed, aircraft mass, rate of climb, rotor speed, rotor control servo position, and 
stabilator position.  The correlation coefficients were from 0.93 to 0.96 between the predicted 
and the actual load [5]. 
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Similar work was accomplished at Virginia Polytechnic Institute and State University using 
neural networks to predict the time-varying mean and oscillatory components of the tail boom 
bending load and the pitch link loads.  For this application the input variables were pitch rate, roll 
rate, yaw rate, vertical acceleration, lateral acceleration, longitudinal acceleration, longitudinal 
control position, and lateral control position.  The correlation coefficients were from 0.907 to 
0.977 between the predicted and actual loads [6]. 
 
1.3  CURRENT APPROACH. 

Despite the fact that multiple linear regression analysis resulted in a small correlation coefficient 
between accelerations measured in the vicinity of the aircraft c.g. and corresponding strains 
experienced by the empennage structure, it is not unreasonable to assume that there nevertheless 
should be some, presumably nonlinear, relationship between these quantities.  The purpose of 
this study was to employ artificial neural networks to define such a relationship, if one exists.   
 
Neural networks are capable of modeling nonlinear relationships between variables and offer a 
good chance of finding the solution.  Two neural networks were used:  one to predict the strains 
in the vertical tail and one to predict the strains in the horizontal tail.  The work concentrated on 
finding the minimum instrumentation sensor set needed to accurately predict these strains, the 
minimum threshold value of significant strain, and the correlation between sensor output and the 
empennage flight loads of a Cessna 172.  The inputs into the neural networks were provided by 
the signals collected in flight from the following instruments: three rate gyros and three angular 
accelerometers measuring the angular velocities and the angular accelerations about each of the 
aircraft axes, two linear accelerometers measuring the z-axis and the y-axis accelerations in the 
vicinity of the aircraft c.g., and two linear accelerometers measuring the z-axis and the y-axis 
accelerations in the tail cone.  In addition, the aircraft had sensors for airspeed, pressure altitude, 
angle of attack, and sideslip measurements.  The test bed for this research was a Cessna 172P. 
This aircraft was equipped with the linear accelerometers and strain gages on the aircraft primary 
structures.  The rate gyros, angular accelerometers, and a portable data acquisition system were 
added. 
 
Various combinations of the signals from these instruments were used as inputs into the neural 
networks.  The networks generated during the research are only valid for the Cessna 172P model.  
To verify this approach and to develop neural networks for other aircraft models, the 
methodology needs to be applied in a similar fashion to those aircraft. 
 
2.  BACKGROUND THEORY. 

2.1  NEURAL NETWORKS DESCRIPTION. 

Artificial neural networks (or simply neural networks) are information processing systems that 
attempt to emulate some of the processing characteristics of the human brain [7].  Much like its 
biological counterpart, an artificial neural network consists of a large number of heavily 
interconnected simple processing elements.  This brain-like organization gives the neural 
network parallel processing and learning capability. 
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The above characteristics make the neural networks useful for tasks that are either impossible or 
very difficult to accomplish using traditional computer programs.  These tasks include 
 
a.  Pattern Classification:   recognition and separation of patterns contained in data. 
b.  Prediction:  determination of a value of a variable from a set of given values. 
c.  Conceptualization:  determination of conceptual relationships within data sets. 
d.  Filtering:  smoothing of a noisy signal. 
e.  Optimization:  determination of the optimal values. 
 
All of the above functions can be accomplished by simply altering the arrangement and number 
of processing elements. 
 
Most neural networks, like the human brain, require iterative feedback training.  Depending on 
the task at hand, either supervised or unsupervised training is needed.  Supervised training means 
that the neural network is given a set of input-correct output pairs to train on.  Unsupervised 
training means that the network is only given the input data to train on.  In general, prediction 
requires supervised training, while classification, conceptualization, filtering, and optimization 
use unsupervised training. 
 
Neural networks are sometimes viewed as “black boxes.”  There is no easy way of tracing or 
mathematically representing the internal processes occurring within a network.  This is especially 
true for the more complex networks that may consist of hundreds of processing elements and 
thousands of connections.  Also, finding the right arrangement of processing elements for a given 
problem usually involves significant amounts of trial and error, as there is no systematic method 
presently available for determining this information a priori. 
 
2.2  COMPONENTS OF NEURAL NETWORKS. 

Neural networks have two main components:  the processing elements and the connections 
between them.  The processing elements, sometimes called neurons, units, cells, or nodes, 
function as information processors, and the connections function as information storage.  Figure 
1 shows a diagram of a processing element with connections going in and out of it.  Each 
processing element first calculates a weighted sum of the input signals, then applies a transfer 
function to this sum and outputs the result.  Transfer functions are generally nonlinear.  
Nonlinear functions are required to solve nonlinear problems. 
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Xi - input signals        yi - output signals      wi - weights 

FIGURE 1.  PROCESSING ELEMENT 
 
Nodes within a network are arranged in layers.  The neural network in figure 2 consists of an 
input layer, a hidden or processing layer, and an output layer.  The initial data enters the network 
through the input layer.  Most of the processing takes place in the hidden layer.  If the complexity 
of a given problem is high, more hidden layers may be required.  Finally, the output layer yields 
the desired information. 

 

FIGURE 2.  SIMPLE NEURAL NETWORK 
 
2.3  BACKPROPAGATION NEURAL NETWORKS.  

The neuron arrangement of the network shown in figure 2 is typical of the backpropagation 
neural network.  The name “backpropagation” comes from the training method used during the 
learning process—back propagation of error.  This training method is simply a gradient descent 
method that minimizes the total squared error of the output computed by the net.  The very 
general nature of the backpropagation training method means that a backpropagation net can be 
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used to solve problems in many areas.  It is probably the best network type to use in prediction 
problems such as the one addressed in this research. 
 
2.3.1  Architecture. 

A three-layer neural network with one layer of hidden units is shown in figure 3.  The input 
neurons are denoted by “X,” hidden layer neurons by “Z,” and output neurons by “Y.”  The 
weights of the connections between the input and the hidden layer are denoted by “v” and the 
weights of the connections between the hidden and the output layer are denoted by “w.”  Only the 
direction of information flow for the feed-forward phase of operation is shown.  During the 
backpropagation phase of learning, signals are sent in the reverse direction. 

 

FIGURE 3.  THREE-LAYER NEURAL NETWORK 
 
Selection of the proper network architecture for the task at hand is not an exact science.  
Following are some general rules used to determine the initial network architecture.  First, the 
input layer must have a number of neurons equal to the number of the input variables.  In case of 
a prediction problem, the number of neurons in the output layer must be equal to the number of 
predicted variables.  In the case of a classification problem, the number of neurons in the output 
layer must be equal to the number of possible classifications. 
 
The number of neurons needed in the hidden layer is more difficult to establish.  An arbitrary 
number of neurons in the hidden layer is chosen to start with.  The optimum number of neurons 
is then found by adding or subtracting a few neurons at a time and retraining the net.  Typically 
there is a number of hidden layer neurons that result in constant accurate predictions. 
 



 7 

2.3.2  Activation Function. 

The backpropagation net used in this study requires an activation or transfer function that is 
continuous, differentiable, and monotonically nondecreasing.  For ease of calculations, it is 
desirable that the derivative be easy to compute, since it is needed for the training process.  
Usually, the activation function is expected to saturate, i.e., approach finite maximum and 
minimum values asymptotically.  One of the most typical activation functions is the binary 
sigmoid function, which has a range of (0,1) and is defined as 
 

( )f x
e x=

+ −

1
1

 

with derivative 
 

( ) ( ) ( )[ ]′ = −f x f x f x1 . 

This function is illustrated in figure 4. 

 

FIGURE 4.  BINARY SIGMOID ACTIVATION FUNCTION 
 
Another common activation function is the hyperbolic tangent, which has a range of (-1,1) and is 
defined as 
 

( )f x
e e
e e

x x

x x=
−
+

−

−  

 
with derivative 
 

( )′ =
+





−f x

2 2

e ex x  

 
This function is illustrated in figure 5. 
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FIGURE 5.  HYPERBOLIC TANGENT ACTIVATION FUNCTION 
 
2.3.3  Training Algorithm. 

Backpropagation neural networks require supervised training.  Training of a network by 
backpropagation involves three stages:  (1) feed-forward of the input training pattern,  
(2) backpropagation of the associated error, and (3) adjustment of the weights.  During feed-
forward, each input neuron (Xi) receives an input signal (xi) and broadcasts this signal to each of 
the hidden layer neurons (Z1,..., Zp).  Each hidden layer neuron then computes its activation (zj) 
and sends its signal to each output neuron.  The activation is computed according to the 
following equation: 
 

z j = f ( Σ i = 1 n x i v i j )  

Each output neuron (Yk) computes its activation (yk) to form the response of the net for the given 
input pattern using the equation 
 

 y k = f Σ j = 1 
p z j w j k  

Each output neuron then compares its computed activation with its target value (tk , k =1,...,m) to 
determine the associated error for that pattern with that unit.  Based on this error, the factor δk is 
computed for each of the output neurons (Yk).  This factor is calculated using the following 
equation: 
 

( ) ( )∑′−= −
p
i jkjkkk wzfyt 1δ  

This factor is used to distribute the error at each output neuron back to all neurons in the previous 
layer that are connected to it.  It is also used to update the weights of the connections between the 
hidden and the output layers.  Once the error is distributed to each of the hidden layer neurons, a 
similar factor δj (j=1,..., p) is computed for each neuron in the hidden layer (Zj) using the 
expression: 
 

( ) ( )∑′∑= ==
n
i iji

m
k jkk vxfw 11δδ  
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It is not necessary to propagate the error back to the input layer, but this δj is used to update the 
weights between the hidden and the input layer. 
 
After all of the δ factors have been determined, the weights for all layers are adjusted 
simultaneously.  The adjustment to the weight wjk (from hidden unit Zj to output unit Yk) – ∆wjk – 
is based on the factor δk and the activation value of the hidden unit Zj 

 

∆ w j k = α δ k z j  

The adjustment to the weight vij (from input unit Xi to hidden unit Zj) – ∆vij – is based on the 
factor δj and the activation value of the input unit Xi 
 

∆ v i j = α δ j x i  

When all the weights have been adjusted, the above process begins again with another feed-
forward phase and a new set of input signals (Xi). 
 
The variable α is an operator-selected learning rate of the network.  It is determined before the 
start of the training cycle.  Its value ranges from 0 to 1.  The learning rate affects the duration of 
the training process.  Small values of α will result in the network taking more time to train; on 
the other hand, a small α is not likely to cause the network to overshoot the solution.  Large 
values of α will cause the network to train more quickly but it might cause it to oscillate about 
the true solution and prevent convergence.   
 
Aside from selection of the learning rate, other decisions must be made before the training 
commences.  First, initial values of the weights must be determined.  The values for the initial 
weights must not be too large, or the initial input signals to each hidden or output unit will be 
likely to fall in the saturation region of the sigmoid function where the derivative of the 
activation function is very small.  If the initial weights are too small, the net input to a hidden or 
output unit will be close to zero.  In both of these instances the learning is extremely slow.  To 
avoid these problems, a common procedure is to initialize each weight to a random value 
between -0.5 and 0.5 (between -1 and 1, 0 and 1 or some other suitable interval depending upon 
the activation function).  The value may be positive or negative because the final weights after 
training may also be of either sign. 
 
Second, a training data set is needed.  The training data set consists of a number of training pairs, 
each of which is comprised of a network input and the expected output.  The training set must be 
a representative sample of the data that a given network is expected to process after the training 
cycle is finished.  This means that the training set must be large enough, (i.e., it must have a 
sufficiently large number of training pairs) and it must cover the full range of the expected inputs 
and outputs. 
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Currently, there is no easy way of determining how many training pairs are needed for a given 
problem.  For a classification problem, the following rule of thumb may be used.  
 

P
W
e

=  

 
where P is the number of training pairs required, W is the total number of weights within the 
network, and e is the expected error expressed as a fraction of 1.  For example, with e = 0.1, a net 
with 80 weights will require 800 training pairs to ensure 90% accuracy in classifying test 
patterns.  This rule of thumb works fairly well for classification problems.  However, there is no 
way of determining a similar value for expected error, e, for a prediction problem.  Some trial 
and error is required in this instance.  A number of training pairs is selected and the net is trained.  
If it fails to train properly, the number of training pairs is increased. 
 
The problem of covering the full range of expected inputs and outputs is somewhat easier to 
solve.  Simply, care must be taken that a training data set covers all possible values of inputs and 
outputs.  This is especially important in the case of a prediction problem.  If certain ranges of 
inputs and outputs are not sufficiently represented in the training set then the network will not 
learn to predict these values correctly.   
 
The final question that must be answered is how long to train the net.  The purpose of training a 
network by backpropagation is to achieve a balance between correct responses to training 
patterns and good responses to new input patterns, i.e., a balance between memorization and 
generalization.  If a net is not trained long enough it will not be able to correctly classify any 
patterns or predict any values.  If a net is trained too long, it will begin to memorize the training 
data.  Its performance will continue to improve for the training set, but it will perform poorly for 
any data that it was not exposed to during the learning cycle. 
 
The problem of the length of the training cycle cannot be successfully addressed before the 
training begins.  Performance of the net must be periodically evaluated during the training for 
both the training set and a testing set that is completely separate from the training data.  As long 
as the performance for the testing set improves, the training continues.  When the performance 
starts degrading, the training process is terminated.  At this point the weights are frozen at their 
current values. 
 
3.  EXPERIMENTAL APPARATUS AND TESTING PROCEDURE. 

3.1  EXPERIMENTAL APPARATUS. 

A specially instrumented Cessna 172P aircraft was used to collect the flight load data.  Figure 6 
shows the locations of the sensors and the data acquisition system in the aircraft. 
 
Two Columbia Research Model 2681 strain sensors were located on the front spar of the left 
horizontal stabilizer and two on the front spar of the vertical fin.  The strain sensors were 
temperature compensated to account for the changes in temperature expected with altitude. 
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Two Columbia Research SA-107BHP linear accelerometers were mounted to the tail cone 
bulkhead to measure the  acceleration in the vicinity of the empennage.  One of the sensors was 
mounted with its sensing axis aligned along the aircraft y axis and the other along the aircraft z 
axis.  The remaining two linear accelerometers (same type) were located in the cabin of the 
aircraft to measure acceleration in the vicinity of the aircraft c.g.  These two accelerometers were 
installed similarly to the ones in the tail cone—one along the aircraft y axis and one along the 
aircraft z axis. 
 

 

FIGURE 6.  LOCATION OF THE SENSORS AND THE DATA ACQUISITION SYSTEM 
 
Three Murata Gyrostar ENV-05H-02 solid-state rate gyros and three Shaevitz angular 
accelerometers were installed in the baggage compartment on a removable instrument pallet.  
One-rate gyro and one-angular accelerometer were provided for each of the aircraft major axes:  
x, y, and z.   
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Aside from the rate gyros and the angular accelerometers, all the other sensors were already 
installed on the airplane when these research efforts were begun.  The rate gyros and the angular 
accelerometers were added to provide a more direct measurement of the necessary kinematic 
variables, since earlier investigations for this project showed that exclusive use of the linear 
accelerometers was not sufficient to predict the empennage flight loads with the desired 
accuracy.  These kinematic variables were used as inputs for the neural networks. 
 
The signals from all sensors were collected by an IOTech DaqBook 216 portable data acquisition 
system.  This is a 16-bit digital data acquisition system capable of handling up to 256 input 
channels at 100 kHz (due to some peculiarities of the aircraft environment and the laptop PC 
used, 200 Hz was the actual maximum sampling rate possible).  The DaqBook 216 was equipped 
with an IOTech DBK 15 universal current/voltage input card and an IOTech DBK43 strain gage 
module.  The DBK 15 card was used to collect the linear accelerometer, rate gyro, and the 
angular accelerometer signals, while the DBK 43 card collected data from the strain gages.  A 
portable computer was used to record the data during flight.  Both the data acquisition system 
and the portable computer were placed on the rear passenger seat.  Table 1 summarizes the 
hardware used to collect the data. 
 

TABLE 1.  SENSORS AND DATA ACQUISITION EQUIPMENT 

Type Model  Manufacturer Quantity 
Strain Sensor Columbia Research 

Model 2681 
Columbia Research 
Laboratories, Inc. 

4 

Linear Accelerometer Columbia Research 
SA-107BHP 

Columbia Research 
Laboratories, Inc. 

4 

Rate Gyro Gyrostar ENV-05H-
02 

Murata Mfg. Co. Ltd. 3 

Angular 
Accelerometer 

Shaevitz, Inc. Shaevitz, Inc. 3 

Portable Computer IBM PC compatible 
486DX-33 

Midwest Micro, Inc. 1 

Portable Data 
Acquisition System 

DaqBook 216 IOTech, Inc. 1 

 

3.2  TESTING PROCEDURE. 

The data were acquired in-flight from a series of maneuvers performed at an altitude of 3,000 ft. 
One-g level flight was chosen for the baseline, and the strain sensors were adjusted to output 
0.0V for this condition.  Sensor readings were recorded for the following maneuvers: 
 
• Sideslip Left 
• Sideslip Right 
• Stabilized-g Turn Left  
• Stabilized-g Turn Right 
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• Push-Pull 
• Roll 
• Dutch Roll 

  
Each maneuver was performed once at 65 KIAS, 80 KIAS, and 95 KIAS.  A maximum load 
factor of 3.0 was reached during a push-pull maneuver.  The maneuvers and the speeds at which 
they were performed were chosen to cover the full range of aircraft motion and a sizable portion 
of its flight envelope.  The part of the flight envelope that was covered (shown in figure 7) was 
judged to be sufficient to establish a method of strain prediction.  As a result, and to assure flight 
test crew safety, the full-flight envelope was not explored.  Appendix A describes analytical 
methods for estimating loads outside the flight envelope. 

 

FIGURE 7.  APPROXIMATE FLIGHT ENVELOPE COVERED 
 
One data set consisted of 21 separate files—3 for each of the selected 7 maneuvers.  Two data 
sets were recorded, one intended for the training of the neural networks and one for the testing.  
These two data sets were recorded on two different days in order to provide differing flight 
conditions. 
 
Figure 8 shows the procedure used to collect the data for a single maneuver.  First, the IOTech 
data acquisition system, the portable computer, and the sensors were powered up.  Then 
DAQView, a software package used to control the data acquisition system, was started.  Within 
this software a real-time input channel monitor was activated to verify that the computer properly 
received all signals.  To record the signals from a single maneuver, the data acquisition system 
was set to collect 6,000 records at 200 samples per second—30 seconds (2.5 Mbytes) of data. 
When the typical flight profile data was collected, the data acquisition system was set to acquire 
60,000 records at 200 Hz—5 minutes (25 Mbytes) of data.   
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FIGURE 8.  PROCEDURE USED TO COLLECT EACH MANEUVER DATA FILE 
 
The trigger was set to manual activation, and the pilot was instructed to prepare to perform a 
maneuver.  When the pilot was ready, the data acquisition system was triggered and the data 
were recorded to a binary file.  After the recording was complete, the controlling software 
automatically converted it to ASCII format.  Given that there were no problems while the signals 
were being recorded, this procedure was then repeated for a different maneuver. 
 
3.3  POSTPROCESSING. 

From the beginning, it was noted that there was a low signal to noise ratio in the raw data.  
Preliminary, neural network results indicated that the prediction accuracy improved when the raw 
data were filtered prior to training the network.  A frequency spectrum analysis was performed 
using DADisp 4.0 [8].  It indicated that the signals resulting from the pilot control inputs had 
frequencies of 1.5 Hz or less.  Therefore, a low pass filter with a 2 Hz cutoff frequency was 
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designed within DADisp.  It was noted that this filter could not properly process the first and last 
50 or so records in each file.  Since each maneuver began a short time after the data acquisition 
system was triggered and stopped before the 30-second interval ended, the first 100 and the last 
99 records of each raw data file (total of about 1 second of data) were discarded with no 
substantial loss of information. 
 
The typical flight data file proved too large to be handled by DADisp in one piece.  In order to 
filter it, this file had to be broken up into 16 segments.  Each segment was filtered and the 
unusable records were discarded, segment by segment, each separately.  This reduced the number 
of records from 60,000 in the original typical flight data file to 56,816 total in all 16 parts, after 
which the data were ready to be used in the neural networks. 
 
4.  NEURAL NETWORK SELECTION AND IMPLEMENTATION. 

4.1  SELECTION OF A NEURAL NETWORK. 

4.1.1  Input Data for the Neural Network. 

The two sets of the filtered data files formed the pool of possible inputs for the neural networks. 
Of the two data sets, one was used for training and the other was reserved for testing. 
 
It was assumed that two networks were necessary to predict strain in the empennage structure; 
one for the horizontal tail and one for the vertical tail.  Thus, before the neural network training 
began, the available signals were tentatively split up into two groups.  The first group contained 
the signals that were thought to be useful in the prediction of the strain in the horizontal tail. 
 
• c.g. Nz 
• Tail Nz 
• Pitch rate 
• Yaw rate  
• Pitch acceleration 
• Yaw acceleration 
• Roll acceleration 
• Roll rate 
•  
The second group included only the signals that were assumed to be helpful in the prediction of 
the strain in the vertical tail: 
 
• c.g. Ny  
• Tail Ny  
• Roll rate  
• Roll acceleration 
• Yaw acceleration 
• Rate yaw Rate 
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In order for the neural networks to properly learn the relationship between the strains and the 
kinematic variables, the full range of measured strains had to be represented within the training 
files.  Table 2 shows the strains measured in flight for each maneuver.  It should be noted that 
since the strain sensors were zeroed at the 1-g flight condition, zero strain meant that there was 
no variation from this flight condition and not that the strain was actually zero. 
 
TABLE 2.  MAXIMUM AND MINIMUM STRAINS OBSERVED FOR EACH MANEUVER 

 Vertical Tail Horizontal Tail 
 

Maneuver 
Max. Strain 

µε 
Min. Strain 

µε 
Max. Strain 

µε 
Min. Strain 

µε 
Dutch Roll 165 -178 112 -131 
Roll 29 -119 95 -160 
Sideslip Left 4 -92 26 -98 
Sideslip Right 17 -68 82 -59 
Stabilized-g 
Turn Left 

14 -69 17 -63 

Stabilized-g 
Turn Right 

4 -71 32 -67 

Push-Pull -5 -61 44 -97 
 

As shown in table 2, the maximum strain in both the horizontal tail and the vertical tail occurred 
during the dutch-roll maneuver. 
 
4.1.2  Neural Network Architecture. 

The choice of a neural network type was driven by the fact that the relationship between the 
kinematic variables and the strain was unknown and that there was no guarantee that this 
relationship remained constant throughout the test flight envelope.  A modular neural network 
(MNN) was chosen to handle this problem [9].  A MNN may be thought of as a generalization of 
a backpropagation neural network.  It consists of a group of neural networks—referred to as local 
experts—competing to learn different aspects of a problem.  A gating network controls the 
competition and learns to assign different regions of the data space to different local expert 
networks.  Thus, if the relationship between the strain and the kinematic variables changed from 
one maneuver to another or from one speed to another, the neural network would still be able to 
learn to predict strain at all flight conditions.  Sample architecture of a modular neural network is 
shown in figure 9. 
 
Both the gating network and the local experts have full connections from the input layer.  The 
gating network has as many output nodes as there are local experts.  Training occurs 
simultaneously for the gating network and for the local experts.  Competition among the local 
experts is encouraged, so that, for a given input vector, the gating network will tend to choose a 
single local expert rather than a mixture of them.  In this way, the input space is automatically 
partitioned into regions and each local expert takes responsibility for a different region. 
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FIGURE 9.  GENERAL ARCHITECTURE OF A MODULAR NEURAL NETWORK 
 
4.2  NEURAL NETWORK IMPLEMENTATION. 

4.2.1  Selection of Controlling Parameters. 

All of the neural networks created in the course of this research were formed, trained, and tested 
using the NeuralWorks Professional II/Plus version 5.20 software [10].  The program is capable 
of automatically generating a modular neural network from the specified parameters.  The 
parameters of the networks selected are listed in table 3.  Unless otherwise noted, these 
parameters are the same for both the horizontal and the vertical tail networks. 
 

TABLE 3.  PARAMETERS OF THE MODULAR NEURAL NETWORKS 

 
Number of Inputs 

Dependent on the Combination of Signals 
Used for Input 

Local Expert Hidden Layer Neurons 30 
Local Expert Output Layer Neurons 1 
Gating Network Hidden Layer Neurons 400 
Gating Network Output Layer Neurons 5 
Learning Rule Extended Delta-Bar-Delta (EDBD) 
Transfer Function TANH 
Epoch Vertical Tail Network:  20 

Horizontal Tail Network:  15 
F' Offset 0.3 
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In the search for the best signals to use for training of the neural networks, the number of input 
layer neurons varied from 2 to 6 as various combinations of inputs were tried out.  The number of 
neurons in the hidden layer of each local expert was arbitrarily set to 30.  During initial testing, 
this number was increased to as high as 50 with no appreciable change in network performance.  
All local experts had a single neuron in their output layers—this was dictated by the fact that 
each of these networks was expected to predict a single value—the strain in either the horizontal 
or the vertical tail.   
 
The number of neurons in the hidden layer of the gating network was set to 400.  Gating 
networks with less than 400 hidden layer neurons were tried, but the network performance 
decreased substantially.  The number of the neurons in the output layer of the gating network 
(and subsequently the number of the local experts) was set to 5.  This proved sufficient, as none 
of the subsequently trained networks required the use of more than three of the five available 
local experts. 
 
The extended delta-bar-delta (EDBD) learning rule was selected.  This learning rule 
automatically selected and adjusted the learning coefficient, learning coefficient ratio, the 
learning coefficient transition point, and the momentum term.  This minimized the learning time 
and reduced the number of network parameters that had to be selected iteratively.  A hyperbolic 
tangent transfer function was appropriate for the problem at hand because the input values ranged 
from -1 to +1.   
 
The epoch sets the number of training pairs that are presented to the network before the weights 
are updated.  Larger and smaller epochs were tried for both networks, which resulted in generally 
worsened network performance.   
 
The F' offset is a constant added to the value of the derivative of the neuron activation function 
during training in order to prevent neuron saturation.  The NeuralWorks Users Guide suggests 
that it be set to 0.3 for the hyperbolic tangent activation function.  F' offsets of 0.1 and 0.2 were 
also tried with no change in the results. 
 
4.2.2  Neural Network Training. 

Before the training began, two lists of possible input combinations were formed, one for the 
horizontal tail and one for the vertical tail.  A separate training file was generated for each 
possible input combination.  As noted earlier, the observed strain magnitudes forced the use of 
certain maneuvers in the training files.  Thus, all training files used to train horizontal tail 
networks contained roll, dutch-roll, and push-pull files for a total of 17,403 records.  Similarly, 
all vertical tail network training files contained roll and dutch-roll files for a total of 11,602 
records. 
 
A neural network was formed using the Instanet utility within the NeuralWorks program.  The 
operator entered all the parameters, and the software automatically generated the network 
architecture.  The operator then selected the training file and the length of the learning cycle was 
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set to be equal to the number of records in the training file.  The training pairs were presented to 
the network in random order. 
 
4.2.3  Neural Network Testing. 

After the training was completed, each maneuver data file was used to test the network.  This 
produced 40 result files for each neural network.  A BASIC program was used to calculate the 
maximum error between the measured and predicted strain values and the number of points 
falling outside of the tolerance band for each maneuver.  Using the Poly Software International 
(Psi Plot) software package [11], scatter plots of the network results were formed. 
 
5.  ANALYSIS OF RESULTS. 

5.1  EVALUATION CRITERIA. 

Before the results can be evaluated, one must first establish a baseline definition of the ideal 
neural network output.  In view of the problem at hand, the following guidelines were derived.   
 
First, not all stresses that may be experienced by a structure significantly contribute to the 
accumulated fatigue damage.  A stress lower than that necessary to cause failure after 107 cycles 
(for a given stress ratio) is not considered to cause fatigue damage.  Thus, an insignificant stress 
region was defined to exist at or below 1,000 psi.  According to the S-N curves for 2024 
aluminum, the minimum stress that causes fatigue damage is 5,000 psi for a full stress reversal.  
The cutoff of 1,000 psi was selected due to the fact that the strain gages were not located at the 
points where the stresses were greatest and because the aircraft was not flown to all corners of its 
flight envelope.  
 
Second, within the significant stress region, a tolerance band of +50 µε was assumed.  Since 
eventually this method is to be used to help evaluate the fatigue life of empennage structures, the 
stresses should be predicted at least as accurately as they are plotted on the Maximum Stress axis 
of the S-N curves.  The stresses in the S-N curves found in the MIL-HDBK-5E are plotted to 
within 1,000 psi, which for aluminum translates to 100 µε [12].  Thus, this number was selected 
as the full width of the tolerance band. 
 
5.2  GENERAL OBSERVATIONS. 

It was noted that only a small fraction of the recorded strains due to maneuver loads resulted in 
stresses larger than 1,000 psi.  Out of 232,040 records collected, 4,332 or about 2% contained 
strains that produced significant horizontal tail stresses.  Similarly, there were only 6,696 
records—about 3%—with vertical tail strains that resulted in stresses larger than 1,000 psi. 
 
For the horizontal tail, the significant strains were produced by the roll and dutch-roll maneuvers. 
All of the significant vertical tail strains were caused by the dutch rolls.  It was surprising that the 
steady-state maneuvers (sideslip for the vertical tail and the stabilized-g turn for the horizontal 
tail) all resulted in very small strains.  The horizontal tail strains observed during push-pulls were 
also surprisingly small, though not as small as those resulting from the stabilized-g maneuvers. 
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5.3  HORIZONTAL TAIL NEURAL NETWORK RESULTS. 

The best horizontal tail strain prediction results were obtained when the x-, y-, and z-axes angular 
accelerometers and the c.g. Nz linear accelerometer signals from a dutch roll at 80 KIAS, a roll at 
80 KIAS, and a push-pull at 80 KIAS were used to train the neural network.  These results are 
summarized in table 4 and figures 10 through 19.  Table 4 shows the number of significant 
strains, number of strains predicted that fell outside of the tolerance band, and the maximum 
error of prediction for those maneuvers that caused at least some significant stresses in the 
horizontal tail.  Figures 10 through 19 present the results as x, y plots of the normalized predicted 
strain vs. the normalized measured strain.  Since the neural network needed inputs that ranged 
from -1 to +1, the magnitudes of the signals used to train it had to be normalized to fall within 
this range.  Zero strain means no variation from the baseline flight condition, which was a 1-g 
level flight. Positive values of strain correspond to a load factor less than 1.0 (strain gage in 
tension) and negative to a load factor greater than 1.0 (strain gage in compression).  
 

TABLE 4.  SUMMARY OF THE RESULTS OF THE HORIZONTAL  
TAIL STRAIN PREDICTION 

 Significant Stress Region Entire Data File 

Maneuver 
Number of 

Records 

Records 
Outside of 
Tolerance 
Band of  

500 psi (50 µε) 

Maximum  
Error of 

Prediction 
(µε) 

Number of 
Records 

Records 
Outside of 
Tolerance  
Band of  

500 psi (50 µε) 

Maximum 
Error of 

Prediction 
(µε) 

Dutch Roll, 80 KIAS, 
Training Set 

384 0 45 5,801 0 49 

Dutch Roll, 95 KIAS, 
Training Set 

184 0 32 5,801 357 (6%) 69 

Dutch Roll, 80 KIAS, Testing 
Set 

45 0 36 5,801 102 (2%) 58 

Dutch Roll, 95 KIAS, Testing 
Set 

730 202 (27%) 82 5,801 604 (10%) 82 

Roll, 65 KIAS, Training Set 313 0 30 5,801 0 40 
Roll, 80 KIAS, Training Set 585 0 44 5,801 0 44 
Roll, 95 KIAS, Training Set 1,021 34 (3%) 55 5,801 103 (2%) 66 
Roll, 65 KIAS, Testing Set 25 0 38 5,801 0 42 
Roll, 80 KIAS, Testing Set 297 0 39 5,801 58 (1%) 55 
Roll, 95 KIAS, Testing Set 748 54 (7%) 59 5,801 236 (4%) 63 
Total 4,332 290 (7%)  232,040* 16,950 (7%)*  

 *These include the maneuvers that did not result in significant strains. 

The horizontal tail neural network was able to predict 93% of the significant strains to within 50 
µε of their corresponding measured values.  It had a tendency to underestimate the magnitudes of 
strains resulting from the dutch-roll maneuvers as is apparent from figures 10 through 13. 
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FIGURE 10.  DUCTH ROLL, 80 KIAS, HORIZONTAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 

 

 

FIGURE 11.  DUTCH ROLL, 80 KIAS, HORIZONTAL TAIL, TESTING SET— 
STRAIN PREDICTION RESULTS 



 22 

 

FIGURE 12.  DUTCH ROLL, 95 KIAS, HORIZTONAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 

 
 

 

FIGURE 13.  DUCTH ROLL, 95 KIAS, HORIZTONAL TAIL, TESTING SET— 
STRAIN PREDICTION RESULTS 
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FIGURE 14.  ROLL, 65 KIAS, HORIZONTAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 

 
 

 

FIGURE 15.  ROLL, 65 KIAS, HORIZONTAL TAIL, TESTING SET  
STRAIN PREDICTION RESULTS 
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FIGURE 16.  ROLL, 80 KIAS, HORIZTONAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 

 

 

FIGURE 17.  ROLL, 80 KIAS, HORIZONTAL TAIL, TESTING SET— 
STRAIN  PREDICTION RESULTS 
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FIGURE 18.  ROLL, 95 KIAS, HORIZONTAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 

 
 

 

FIGURE 19.  ROLL, 95 KIAS, HORIZONTAL TAIL, TESTING SET—STRAIN  
PREDICTION RESULTS 
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The strain prediction for the roll maneuver (figures 14 through 19) produced better results when 
the strain gage was in tension—positive normalized strain.  In this region the predicted strains 
agreed closely with the measured strains.  When the strain gage was in compression—negative 
normalized strain—as the strains increased, the neural network again tended to underestimate the 
strains. 
 
All the strains collected from the sideslip, stabilized-g turn, and push-pull were insignificant.  
The neural network was able to predict these properly, i.e., for these maneuvers all the measured 
strains and all the predicted strains fell within the insignificant stress region. 
 
5.4  VERTICAL TAIL NEURAL NETWORK RESULTS. 

The results of the vertical tail strain prediction are summarized in table 5 and figures 20 through 
27.  The neural network that produced these results was trained using the y- and x-axes angular 
accelerometer signals collected from roll and dutch-roll maneuvers both at 80 KIAS. 
 

TABLE 5.  SUMMARY OF THE RESULTS OF THE VERTICAL TAIL STRAIN 
PREDICTION 

Significant Stress Region Entire Data File 

Maneuver 
Number of 

Records 

Records  
Outside of  
Tolerance 
Band of  

500 psi (50 µε) 

Max. Error 
of Prediction 

 (µε) 
Number of 

Records 

Records  
Outside of  
Tolerance  
Band of  

500 psi (50 µε) 

Max. Error 
of 

Prediction 
(µε) 

Dutch Roll, 65 KIAS, 
Training Set 

332 0 40 5,801 238 (4%) 51 

Dutch Roll, 80 KIAS, 
Training Set 

1,469 0 33 5,801 0 34 

Dutch Roll, 95 KIAS, 
Training Set 

1,830 0 23 5,801 0 39 

Dutch Roll, 65 KIAS, 
Testing Set 

102 0 34 5,801 158 (3%) 51 

Dutch Roll, 80 KIAS, 
Testing Set 

987 0 33 5,801 0 39 

Dutch Roll, 95 KIAS, 
Testing Set 

1,976 0 34 5,801 15 (0.3%) 42 

Total 6,696 0 0 232,040* 411 (0.2%)*  

*These include the maneuvers that did not produce significant strains. 

In the portion of the flight envelope covered during the data collection, the only maneuver that 
produced significant stresses in the vertical tail was the dutch roll.  The neural network predicted 
100% of the significant strains to within the predefined tolerance band.  With the exception of 
the dutch-roll, 65 KIAS, and training set file, the maximum error of prediction in the significant 
stress region was equal to or less than ±40 µε—smaller than the target of  +50 µε.  All the 
insignificant strains resulting from the remaining maneuvers were properly predicted. 
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In all cases, as the magnitude of the strain increased the accuracy of the prediction improved 
(figures 20 through 25).  In all dutch-roll maneuvers, the largest deviation occurred in the region 
from -0.2 to +0.2 normalized measured strain.  The strains of these magnitudes were observed 
when the aircraft was at bank and yaw angles close to 0 degrees.  During this portion of the 
maneuver, the only control input was rudder deflection, and for a short time the aircraft motion 
was similar to a sideslip.  Thus, for the strains collected in this segment of the dutch-roll, the 
network output was very similar to that for the sideslip maneuvers shown in figures 26 and 27. 
 

 

FIGURE 20.  DUTCH ROLL, 65 KIAS, VERTICAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 

 

 

FIGURE 21.  DUTCH ROLL, 65 KIAS, VERTICAL TAIL, TESTING SET— 
STRAIN PREDICTION RESULTS 
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FIGURE 22.  DUTCH ROLL, 80 KIAS, VERTICAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 

 

 

FIGURE 23.  DUTCH ROLL, 80 KIAS, VERTICAL TAIL, TESTING SET— 
STRAIN PREDICTION RESULTS 
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FIGURE 24.  DUTCH ROLL, 95 KIAS, VERTICAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 

 

 

FIGURE 25.  DUTCH ROLL, 95 KIAS, VERTICAL TAIL, TESTING SET— 
STRAIN PREDICTION RESULTS 
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FIGURE 26.  SIDESLIP LEFT, 80 KIAS, VERTICAL TAIL, TESTING SET— 
STRAIN PREDICTION RESULTS 

 

 

FIGURE 27.  SIDESLIP RIGHT, 65 KIAS, VERTICAL TAIL, TRAINING SET— 
STRAIN PREDICTION RESULTS 
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6.  CONCLUSIONS AND RECOMMENDATIONS. 

The backpropagation neural networks successfully predicted the strain from the maneuver loads 
in the empennage structure of a Cessna 172P within acceptable limits.  For the Cessna 172P, the 
x-, y-, and z-axis angular accelerometer and c.g. Nz linear accelerometer signals were sufficient 
to train the neural networks that were used to predict the strains in the maneuver loads.  The x-, 
y-, and z-axis angular accelerometers and the c.g. Nz linear accelerometer appear to be the 
minimum set of sensors required to predict the strains in the horizontal and the vertical tail of a 
Cessna 172P.  While not as accurate as direct measurement using strain gages, the remote sensors 
and the neural networks are adequate for flight load measurements to establish the fatigue loads 
spectra database.  For the maneuvers performed, the empennage flight loads were small. 
 
Both the horizontal and the vertical tail neural networks used angular accelerometer signals.  
Present day angular accelerometers of the type used herein cost between $1,700 to $3,000.  In 
order to reduce the price of the instrumentation, the rate gyro signals were numerically 
differentiated to obtain angular accelerations.  These derived angular acceleration signals should 
be used instead of the raw angular accelerations to train the neural networks.  Should these new 
networks be equally capable of accurately predicting the strains, the cost of the instrumentation 
would be significantly reduced as the rate gyros cost only $300 each. 
 
The neural networks developed in the course of this research—especially the horizontal tail 
neural network—should be optimized to reduce the amount of time necessary to calculate the 
strains and, if necessary, to improve the accuracy of the prediction.  An effort should also be 
made to determine if there is a better way of presenting data to the neural networks.  In the 
current neural networks, filtered sensor signals were used as inputs.  One other possibility here is 
to use the power spectra of these signals to train the networks. 
 
Finally, the methodology of strain prediction developed herein should be verified on other 
aircraft models, especially ones with different empennage configurations.  The horizontal tail on 
a Cessna 172P is mounted to the fuselage below the vertical tail.  This approach should also be 
verified on a mid-tail, a high T-tail, and a V-tail type empennage. 
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APPENDIX A—–AERODYNAMIC LOADING ON THE EMPENNAGE 

The aerodynamic forces acting on a lifting surface such as the horizontal or vertical tail of an 
airplane can be represented as lift and drag at the mean aerodynamic center, together with a 
“pitching” couple that is independent of the angle of attack.  Lift induces bending moment that 
results in normal and shear stresses in the spars, while drag induces bending moment that results 
in normal stresses in the spars and shear stresses in the panels.  The couple produces torsion that 
results in shear stresses in the panels.  This appendix provides an analytical method for 
estimating strains at points within the airplane flight envelope not covered by the test flight. 
 
A.1  SIGNIFICANCE OF MEASURED STRAINS. 

The strain gages in the test aircraft are located on the front spar caps, approximately one-third 
semispan outboard.  The gages measure normal strains (stresses) induced by changes in moments 
about the x axis: 
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Consequently, the only strains measured are induced by changes in lift and drag.  Only the lift is 
considered since drag is comparatively negligible under most flight situations. 
 
Strains recorded for the training and testing maneuvers were performed for a subset of the 
aircraft flight envelope.  If the entire flight envelope is considered, stresses and strains will be 
higher. Considering the horizontal and vertical tails as cantilever beams, maximum bending 
moments occur at the root of the tail surfaces.  However, due to installation considerations, the 
strain gages are located approximately one-third of the semispan outboard.  Hence, maximum 
strains due to bending are greater than measured strains by a proportional factor. 
 
A.2  SPEED EFFECTS ON TAIL LOADS.  

A.2.1  ROLL MANEUVER. 

A.2.1.1 Change in Lift of the Horizontal Tail. 

The horizontal tail is a lifting surface. Let c(y) be the chord of the horizontal tail at a distance y 
from the root.  The lift developed by a strip element c(y)δy is 
 

L y y V c y yCeq eq L( ) ( )δ ρ δ= 1
2

2  

 
In a pure roll maneuver, pitch and yaw angular motions are zero while roll rate, p, can be 
relatively “high” even for an airplane such as the C172.  This roll motion results in a linear speed 
py at a distance y from the root of the horizontal tail.  The local angle of attack is modified by an 
angle ∆α where  
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∆α ( ) tany py
Veq

= −1  

 
If py is small compared to Veq, then  
 

∆α ( )y py
Veq

=   

 
The change in lift due to the change in angle of attack can be expressed as 
 

      ∆ ∆L y y V c y yC yroll eq L( ) ( ) ( )δ ρ δ α
α

= 1
2

2  

Substituting 
 

 ∆L y y V c y yC pyroll eq L( ) ( )δ ρ δ
α

= 1
2

 

 
The change in lift is linear with speed if the roll rate is constant.  However, in general, roll rates 
may increase or decrease depending on the torsional rigidity of the wing, aileron forces, and 
aileron control effectiveness.  In this case, for speeds V1 and V2  
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2 1

2
1

=  

The bending moment induced by the change in lift is proportional to the load; thus 
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Assuming that stresses in other directions are negligible, 
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On the other hand, if p increases linearly with speed, the relationship varies as the square of the 
speeds. 
 
A.2.1.2 Change in Lift (Side Force) of the Vertical Tail. 

In a pure roll maneuver, the vertical tail is subjected to a side force, i.e., lift, resulting from the 
change in the flow angle between the relative wind and the vertical tail.  The side-wash effect is 
comparatively negligible. 
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Similar to the horizontal tail, the roll rate produces a linear speed, pz. If pz is small compared to 
Veq,  
 

∆βVT
eq

z pz
V

( ) =  

 
The side force due to the change of angle βVT can be expressed as 
 

      (∆ ∆Y z z V c z z C zroll VT eq VT L VT VT( )) ( ) ( ) ( )δ ρ δ β
β

= 1
2

2  
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If p is constant, the change in side force is linear with respect to speed: 
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Again, if p increases linearly with speed, the relationship varies as the square of the speeds. 
 
A.2.2  PUSH-PULL PITCHING MANEUVER. 

During a pure push-pull maneuver, a change in loading should occur only in the horizontal tail. 
However, due to gyroscopic effects from spinning parts such as the engine and propeller, some 
vertical tail loading are induced. 
 
A.2.2.1 Change in Lift on the Horizontal Tail. 

The pitch rate is generated by an initial change in lift due to the elevator deflection.  The 
resulting angular velocity produces a change in the tail angle of attack, and thus a subsequent 
change in lift  
 

∆ ∆L y V S y Ceq L( ) ( )= 1
2
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This effect is known as pitch damping.  For horizontal tails with zero sweep angles, ∆α  is 
constant along the span and is limited by the maximum g’s permissible (3.8 g in normal 
category, 4.4 g in utility category) for the airplane.  The pitch rate, q, can be shown to be 
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Hence, the change in lift resulting from the change in angle-of-attack depends on g only and is 
independent of speed.  Nevertheless, the initial lift that started the pitching motion that was 
produced by the elevator does depend on the speed: 
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Here, Cm

elevatorδ  is the elevator control power and δ elevator  is the elevator deflection. These act to 
oppose each other. For a given elevator deflection, the first approximation yields,   
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A.2.3  SIDESLIP MANEUVER. 

Loads induced on the horizontal tail during sideslip maneuvers are due to the deflection of the 
elevator to maintain altitude.  This is artificial and specific to the performance of the flight test; 
hence, analysis for higher speeds is not significant. 
 
A.2.3.1 Change in Lift (Side Force) on the Vertical Tail. 

The change in the side force on the vertical tail is produced by the change of sideslip angle βVT 
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∆βVT  is essentially constant along the span of the vertical tail.  Similar to the horizontal tail  load 
during push-pull maneuver, the change in lift has a quadratic form with respect to speed 
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A.2.4  DUTCH-ROLL MANEUVER. 

A dutch-roll maneuver is a coupling of roll and sideslip.  Strains produced by dutch rolls can be 
calculated by superposing the strains produced by roll to those produced by sideslip. 
 
A.2.5  STABILIZED-g TURN MANEUVER. 

In a level stabilized turn, the turn rate is expressed as 
 

!ψ = −g n
V

2 1  



A-5/A-6 

where n is determined by the angle of bank, φ,  
 

)(
1

φcos
n =  

 
The angular rotation about the y axis, i.e., the airplane pitch rate is  
 

φφψ sin
V
ngq 1sin

2 −== !  

 
The pitching motion creates a change in the tail angle-of-attack, and hence its lift: 
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and  
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2
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The change in lift is independent of the speed and varies with g only. 
 
A.3  VARIATION OF THE LOADS WITH ALTITUDE. 

For the Cessna 172, altitudes over 10,000 ft are not common. Lift is expressed as 
 

Lift V SCL=  1
2

2ρ  

 
where V is the true airspeed and ρ is the density of the air.  In standard atmosphere, the air 
density decreases with altitude.  At a given rpm, true airspeed corresponding to a given indicated 
airspeed varies with altitude.  For example, at 2,500 rpm, the Pilot Operating Handbook of the 
C172P shows that the cruise speed decreases from 114 KIAS at 2,000 ft to 109 KIAS at 12,000 
ft.  Thus, if at 7,000 ft, V=112.5 KIAS 
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This relationship shows that for the same airspeed, loads are higher at lower altitudes.  However, 
for aircraft operating at altitudes below 10,000 ft, the effect is small. 
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